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ABSTRACT

In this paper, it is shown that if the cost matrix of an as-

signment problem has the following property cij = I j - ii

then any basic feasible solution is optimal if and only if its

unit components belong to two well defined symmetric

regions. The matrix with above mentioned property is

called the "REORDERING MATRIX," because it arose

for the first time in the reordering of nodes of a critical

path and other acyclic network problems.



OPTIMALITY PROPERTIES OF A SPECIAL ASSIGNMENT PROBLEM

I. Introduction

Assume we want to order the nodes of a network in such a way that

for every arc (i, j) , which belongs to the topology of the network, i < j .

In case of a large network, this may not be possible to do manually, as it

generates a large permutation problem. An algorithm to reorder the nodes

of the network is given in ( 11, where the number of steps involved is related

to the magnitude of divergence of the node order of a network, where diver-

gence is defined to be

m

S i - ail
i =1

where a. is the initial order of the node having final order i
I

In order to fix an upper bound to the divergence of the network, we

have to determine the maximum value of S over all possible m-tuples a

We will now show that this problem is equivalent to the classical

assignment problem.

*This problem is important because it reduces significantly the work in-

volved in logical search for a critical path problem. It is impossible to
perform this node ordering when loops are present in the network.



II. Mathematical Formulation

Let = a Ia is an m-tuple* chosen without repetition from

the set {,2,...,m} e.g., a = (2,m, 10...,I5)J

Note that -Jhas ml nonidentical components.

Then, the problem becomes

m

(1) max S i- ail
a c- =1

where the m-tuples "a" are chosen without repetition from the set of m

first integers, to each integer k corresponding one and only one a. for

each m-tuple "a" . It is now easy to see that all the components of each
m

possible summation 2; li- ail are of the form li - j I where
i =1

i= ,...,m ; j = ,...,m . We can list all these possible values under

matrix form where each entry is equal to the absolute difference between

its row number and column number.

Define cij = Ii - J I and C = {Cij. Any possible S can be

found by summing up m entries of the matrix selected by pickirg one and

only one element from each row and each column. For example

i a. = j
1

c 11 SI c 1 3  c 14

z c 2 1  c 2 2 G c24

3 9 c 3 2  c 3 3  c 3 4

4 c4 1  c4 2  c4 3  c44

m-tlaple "a" has m elements, where a i (i = m,...,m) is the it h element.
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A possible S = c 1 2 + c 2 3 - c 3 1 + c 4 4 corresponding to the 4-tuple

"a" = (2, 3, 1,4) .

Determining the max S is equivalent to finding some feasible
aec'

combination of the entries of the C matrix (i. e., one and only one entry

in each row and each cblumn) such that their sum is maximum. Thus, the

problem reduces to

maximize S = c..x.

ij

Subject to:

x= 1 i 1,

xj
(2) x.j = 1 = 1, . ,

i

x> 0 x.. are integers

which is the classical assignment problem formulation.

Our aim is to prove,in this particular set-up, that this optimum

for S can be achieved by selecting any feasible solution such that all

its components belong to two symmetric regions of the matrix and that no

optimal solution can be found if one or more components do not belong to

these two regions.
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III. The Optimal Region

In the reordering matrix let us define the two following sets of entries.

m{c if< m isod

0 odd >m m eve

Let 01 0x.. 1 01 if 2. thn

0*31. * 0~if 0if m Oisen

Then,0 = 1 U andiur is cale thOptimal Region.
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NOTE: If we were minimizing 7, c..x., then the optimal solution would be

unique and would be x = (x1 l, x 2 , x 3 3, ... ,x mm) which is easy to see

because all the elements of the principal diagonal are zero and the other

elements are strictly positive.

IV. Properties of the Reordering Matrix

1. For all crs 1 0*

O*
either all crk 0 are greater than or equal to crs

or all cks C 0 are greater than or equal to c rs

2. For any submatrix of C of the form

Cs c :ici,jI+l I
s i .l,,j Ci+l,j+l

such that i A j

then cij + ci+lJ+l = Ci+l j + ci,j+ . In fact this property

is true for any submatrix chosen so that all its elements

C3 c ci, j+6
= Ci+r, j Ci+r, j+s

are all below the principal diagonal or above the principal

diagonal.

3. For any submatrix of C of the form

C cij ci, J+"8

C i+r, j C i+r, j+s

such that ci+r, j is an entry below the principal diagonal of

C and ci, j+s is an entry above the principal diagonal. Then
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cij + Ci+r,j+s < ci+r,j + ci,j+s

PROOF: When Ci+rj is below the principal diagonal of C , it implies

that

(3) i + r > j i j + r > 0 =:D r>j -i

When c is above the principal diagonal of C , it implies that

(4) j + s > i =0-- i - j - s < 0 =MD. a > i -j.

cij + ci+r,j+ s < Ci+rj + cij+, can be written as follows:

I i- jj + ji - j + r - el < Ii - j + rl + Ii - j - el

From (3) and (4), we get

I -jj + -j + r - el < (i -j + r) - -j - s)
(5) I "  +l - j + r - al < r .+ •

Here we can distinguish various cases. We willprove it for one case.

Assume i > j and r > s ; (5) then becomes

i -j+i -j +r - s<r + s

then

2i - 2j < 2s

or

i-j<.

which is relation (4).
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It is possible to prove the optimality of any feasible solution in

region 0 by using the theory of linear programming, or more specifically

the assignment problem algorithm. 2 Let the simplex multipliers be

Wm+ 1

= -i for the constraints x.. = 1 for i <
a

W +i for the constraints xi. = 1 for i> m + I

j ~m+l1
= -j for the constraints xij = 1 for > m

i

+j for the constraints ~xi.=l 1m+r 1

i
o*

If we price out, it is possible to see that the cj c 0 are equal to zero

and the other 0* are poitive. We are going to give an alternative

proof which will use the properties of the reordering matrix and the fact

that the solution has to be feasible.

V. Optimality Theorem

THEOREM: A feasible solution x is optimal if and only if all its com-

ponents lie in 0 .

PROOF: Suppose A is afeasible solution but has at least one component which

does not lie in 0 , we will then show that we can improve S .

Let us assume that A.. is such that i < m +, <nM+

and j > i , i.e., in Figure 2, lies in U . In order to be feasible x

has at least a component, say e V , because it is impossible to "cover"

-7-



m+ 1

Figure 2

the M last rows with "selections" only done in V as V has less

than T -l columns (by assumption on i.). We can then find a now

feasible solution by replacing A ija l by x1 and xkj and by

property 3, S will be improved.

We have proved that for any feasible solution which has one or more

components outside 0 , it can be improved. So, we can produce an

iterative procedure which will increase S , as long as x has a component

which does not lie in 0 .

If x0 e 0 , it is not possible to improve the value of S because

the only acceptable substitutions are of the form

o o
nij Xi+r, j+s

0 0byXi+r, j and x( 0 O)

[a I = greatest integer contained in a.
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or repeated substitutions of that form. But by property 2 we know that

the value of S will not change. If one of the components of our substitutions

does not lie in 0 then we have proved that we can improve the value of

S.

COROLLARY: All the feasible solutions in region 0 are optimal.

PROOF: By property 2 of the reordering matrix, from anoptimal solution

o we can find new optimal solutions i by repeated substitutions of the

form:

0 00 0
O. O x = 1 x O  .

(6) xij = i+r,j+s x i+r,j = i, j+s 0

by

__x- i+rj+s , Xi+r,j =xi, j+s =1

as long as Xi+rj and xi, j+ s belong to 0.

NOTE: By repeated substitution of the form (6) it is possible to reproduce

all m-tuples a c /9 in matrix C
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